If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2=160
We move all terms to the left:
b^2-(160)=0
a = 1; b = 0; c = -160;
Δ = b2-4ac
Δ = 02-4·1·(-160)
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{10}}{2*1}=\frac{0-8\sqrt{10}}{2} =-\frac{8\sqrt{10}}{2} =-4\sqrt{10} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{10}}{2*1}=\frac{0+8\sqrt{10}}{2} =\frac{8\sqrt{10}}{2} =4\sqrt{10} $
| 4(7)+8y=20 | | -148=4x-8(1+4x) | | 12x+5+21x+3=180 | | 5/3x+1/3x=231/3+8/3x | | 3^x=6^4x-2 | | (-3-3)m=-6 | | (14x)+(22x)=180 | | 1.3x-4=5.3x=8 | | 2(1.3x=4)-6-6=1.3(3x-21) | | -3(2n-5)=1/2(-12n+36) | | h/3+10=14 | | 4x-1(-1/2x+2)=-11 | | 2/3(24-x)=54 | | 1+2x+4=13+x | | 1.5x=-10 | | 3(x+4/3)=3x+4 | | 2x×x+3=360 | | 5p+5=2p+5 | | (-9,0)m=-6 | | 1/3s=1/23 | | 15^2+8^2=c^2 | | 5/2x+1/2x=21/2+9/2x | | 0=2x3-4x2 | | x=18-1/36x | | 6^2+b^2=14^2 | | 2x×x+3=300 | | 2n+5n-7n+3n=3 | | 10-0.8(b-5)=0.6(2b-5) | | 5x-16=3x+13 | | 5.4+0.2x=–1.4x+8.6 | | 50+73t-3t^2=0 | | 15x^2+x=6 |